Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216508

RESUMO

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Assuntos
Alcenos , Ácidos Graxos , Ácidos Graxos/metabolismo , Alcenos/química , Descarboxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
2.
Nat Commun ; 12(1): 4049, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193873

RESUMO

Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.


Assuntos
Parede Celular/metabolismo , Citrus/microbiologia , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Fatores de Virulência/genética , Xanthomonas/metabolismo , Xilanos/metabolismo , Proteínas de Bactérias/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ativação Transcricional , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Xanthomonas/genética , Xanthomonas/patogenicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-32435636

RESUMO

Macaw palm is a highly oil-producing plant, which presents high contents of free fatty acids, being a promising feedstock for biofuel production. The current chemical routes are costly and complex, involving highly harsh industrial conditions. Enzymatic processing is a potential alternative; however, it is hampered by the scarce knowledge on biocatalysts adapted to this acidic feedstock. This work describes a novel lipase isolated from the thermophilic fungus Rasamsonia emersonii (ReLip), which tolerates extreme conditions such as the presence of methanol, high temperatures, and acidic medium. Among the tested feedstocks, the enzyme showed the highest preference for macaw palm oil, producing a hydrolyzate with a final free fatty acid content of 92%. Crystallographic studies revealed a closed conformation of the helical amphipathic lid that typically undergoes conformational changes in a mechanism of interfacial activation. Such conformation of the lid is stabilized by a salt bridge, not observed in other structurally characterized homologs, which is likely involved in the tolerance to organic solvents. Moreover, the lack of conservation of the aromatic cluster IxxWxxxxxF in the lid of ReLip with the natural mutation of the phenylalanine by an alanine might be correlated with the preference of short acyl chains, although preserving catalytic activity on insoluble substrates. In addition, the presence of five acidic amino acids in the lid of ReLip, a rare property reported in other lipases, may have contributed to its ability to tolerate and be effective in acidic environments. Therefore, our work describes a new fungal biocatalyst capable of efficiently hydrolyzing macaw oil, an attractive feedstock for the production of "drop-in" biofuels, with high desirable feature for industrial conditions such as thermal and methanol tolerance, and optimum acidic pH. Moreover, the crystallographic structure was elucidated, providing a structural basis for the enzyme substrate preference and tolerance to organic solvents.

4.
J Proteomics ; 212: 103549, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31698103

RESUMO

Vertebrates usually have three class V myosin paralogues (MyoV) to control membrane trafficking in the actin-rich cell cortex, but their functional overlapping or differentiation through cargoes selectivity is yet only partially understood. In this work, we reveal that the globular tail domain of MyoVc binds to the active form of small GTPase Rab3A with nanomolar affinity, a feature shared with MyoVa but not with MyoVb. Using molecular docking analyses guided by chemical cross-linking restraints, we propose a model to explain how Rab3A selectively recognizes MyoVa and MyoVc via a distinct binding site from that used by Rab11A. The MyoVa/c binding interface involves multiple residues from both lobules (I and II) and the short helix at the α2-α3 link region, which is conserved between MyoVa and MyoVc, but not in MyoVb. This motif is also responsible for the selective binding of RILPL2 by MyoVa and potentially MyoVc. Together, these findings support the selective recruitment of MyoVa and MyoVc to exocytic pathways via Rab3A and expand our knowledge about the functional evolution of class V myosins. SIGNIFICANCE: Hormone secretion, neurotransmitter release, and cytoplasm membrane recycling are examples of processes that rely on the interaction of molecular motors and Rab GTPases to regulate the intracellular trafficking and tethering of vesicles. Defects in these proteins may cause neurological impairment, immunodeficiency, and other severe disorders, being fatal in some cases. Despite their crucial roles, little is known about how these molecular motors are selectively recruited by specific members of the large family of Rab GTPases. In this study, we unveil the interaction between the actin-based molecular motor Myosin Vc and the small GTPase Rab3A, a key coordinator of vesicle trafficking and exocytosis in mammalian cells. Moreover, we propose a model for their recognition and demonstrate that Rab3A specifically binds to the globular tail of Myosins Va and Vc, but not of Myosin Vb, advancing our knowledge about the molecular basis for the selective recruitment of class V myosins by Rab GTPases.


Assuntos
Exocitose , Miosina Tipo V/química , Proteína rab3A de Ligação ao GTP/química , Actinas/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Haplorrinos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Miosina Tipo V/isolamento & purificação , Miosina Tipo V/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Proteína rab3A de Ligação ao GTP/isolamento & purificação , Proteína rab3A de Ligação ao GTP/metabolismo
5.
Sci Rep ; 9(1): 4903, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894609

RESUMO

ß-glucosidases play a critical role among the enzymes in enzymatic cocktails designed for plant biomass deconstruction. By catalysing the breakdown of ß-1, 4-glycosidic linkages, ß-glucosidases produce free fermentable glucose and alleviate the inhibition of other cellulases by cellobiose during saccharification. Despite this benefit, most characterised fungal ß-glucosidases show weak activity at high glucose concentrations, limiting enzymatic hydrolysis of plant biomass in industrial settings. In this study, structural analyses combined with site-directed mutagenesis efficiently improved the functional properties of a GH1 ß-glucosidase highly expressed by Trichoderma harzianum (ThBgl) under biomass degradation conditions. The tailored enzyme displayed high glucose tolerance levels, confirming that glucose tolerance can be achieved by the substitution of two amino acids that act as gatekeepers, changing active-site accessibility and preventing product inhibition. Furthermore, the enhanced efficiency of the engineered enzyme in terms of the amount of glucose released and ethanol yield was confirmed by saccharification and simultaneous saccharification and fermentation experiments using a wide range of plant biomass feedstocks. Our results not only experimentally confirm the structural basis of glucose tolerance in GH1 ß-glucosidases but also demonstrate a strategy to improve technologies for bioethanol production based on enzymatic hydrolysis.


Assuntos
Lignina/metabolismo , Trichoderma/enzimologia , beta-Glucosidase/química , Domínio Catalítico , Escherichia coli , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Hidrólise , Mutagênese Sítio-Dirigida , Trichoderma/genética , beta-Glucosidase/genética
6.
J Proteomics ; 191: 191-201, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29425735

RESUMO

Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies. Therefore, human and yeast homologous have been better studied and information on plant homologous is still limited, even though plants are continuously exposed to environmental stress. Particularly important is the study of crops that are relevant for agriculture, such as Sorghum bicolor, a C4 grass that is among the five most important cereals and is considered as a bioenergy feedstock. To increase the knowledge on plant chaperones, the hop putative gene for Sorghum bicolor was cloned and the biophysical and structural characterization of the protein was done by cross-linking coupled to mass spectroscopy, small angle X-ray scattering and structural modeling. Additionally, the binding to a peptide EEVD motif, which is present in both Hsp70 and Hsp90, was studied by isothermal titration calorimetry and hydrogen/deuterium exchange and the interaction pattern structurally modeled. The results indicate SbHop as a highly flexible, mainly alpha-helical monomer consisting of nine tetratricopeptide repeat domains, of which one confers high affinity binding to Hsp90 through a conserved carboxylate clamp. Moreover, the present insights into the conserved interactions formed between Hop and Hsp90 can help to design strategies for potential therapeutic approaches for the diseases in which Hop has been implicated.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sorghum/química , Produtos Agrícolas , Proteínas de Choque Térmico/química , Humanos , Conformação Molecular , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química
7.
Int J Biol Macromol ; 93(Pt A): 20-26, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27554938

RESUMO

The GH10 endo-xylanase from Thermoascus aurantiacus CBMAI 756 (XynA) is industrially attractive due to its considerable thermostability and high specific activity. Considering the possibility of a further improvement in thermostability, eleven mutants were created in the present study via site-directed mutagenesis using XynA as a template. XynA and its mutants were successfully overexpressed in Escherichia coli Rosetta-gami DE3 and purified, exhibiting maximum xylanolytic activity at pH 5 and 65°C. Three of the eleven mutants, Q158R, H209N, and N257D, demonstrated increased thermostability relative to the wild type at 70°C and 75°C.Q158R and N257D were stable in the pH range 5.0-10.0, while WT and H209N were stable from pH 8-10. CD analysis demonstrated that the WT and the three mutant enzymes were expressed in a folded form. H209N was the most thermostable mutant, showing a Tm of 71.3°C. Molecular dynamics modeling analyses suggest that the increase in H209N thermostability may beattributed to a higher number of short helices and salt bridges, which displayed a positive charge in the catalytic core, stabilizing its tertiary structure.


Assuntos
Endo-1,4-beta-Xilanases/química , Proteínas Fúngicas/química , Thermoascus/enzimologia , Endo-1,4-beta-Xilanases/genética , Estabilidade Enzimática , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína
8.
J Biol Chem ; 291(36): 18620-31, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27402847

RESUMO

To accomplish its crucial role, mitochondria require proteins that are produced in the cytosol, delivered by cytosolic Hsp90, and translocated to its interior by the translocase outer membrane (TOM) complex. Hsp90 is a dimeric molecular chaperone and its function is modulated by its interaction with a large variety of co-chaperones expressed within the cell. An important family of co-chaperones is characterized by the presence of one TPR (tetratricopeptide repeat) domain, which binds to the C-terminal MEEVD motif of Hsp90. These include Tom70, an important component of the TOM complex. Despite a wealth of studies conducted on the relevance of Tom70·Hsp90 complex formation, there is a dearth of information regarding the exact molecular mode of interaction. To help fill this void, we have employed a combined experimental strategy consisting of cross-linking/mass spectrometry to investigate binding of the C-terminal Hsp90 domain to the cytosolic domain of Tom70. This approach has identified a novel region of contact between C-Hsp90 and Tom70, a finding that is confirmed by probing the corresponding peptides derived from cross-linking experiments via isothermal titration calorimetry and mitochondrial import assays. The data generated in this study are combined to input constraints for a molecular model of the Hsp90/Tom70 interaction, which has been validated by small angle x-ray scattering, hydrogen/deuterium exchange, and mass spectrometry. The resultant model suggests that only one of the MEEVD motifs within dimeric Hsp90 contacts Tom70. Collectively, our findings provide significant insight on the mechanisms by which preproteins interact with Hsp90 and are translocated via Tom70 to the mitochondria.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Mitocondriais/metabolismo , Neurospora crassa/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Bovinos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Neurospora crassa/química , Neurospora crassa/genética , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
9.
N Biotechnol ; 33(4): 467-72, 2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26923808

RESUMO

Xylanases catalyze the hydrolysis of ß-1,4-linked xylosyl moieties from xylan chains, one of the most abundant hemicellulosic polysaccharides found in plant cell walls. These enzymes can exist either as single catalytic domains or as modular proteins composed of one or more carbohydrate-binding modules (CBMs) appended to the catalytic core. However, the molecular mechanisms governing the synergistic effects between catalytic domains and their CBMs are not fully understood. Thus, the goal of this study was to evaluate the functional effects of the fusion of a CBM belonging to family 6, which exhibits high affinity to xylan, with the GH11 xylanase from Bacillus subtilis, which does not have a CBM in its wild-type form. The wild-type enzyme (BsXyl11) and the chimeric protein (BsXyl11-CBM6) were heterologously produced in Escherichia coli and purified to homogeneity for biochemical characterization. The molecular fusion did not alter the pH and temperature dependence, but kinetic data revealed an increase of 65% in the catalytic efficiency of the chimeric enzyme. Furthermore, the BsXyl11-CBM6 chimera was used to supplement the commercial cocktail Accellerase® 1500 and improved the reducing sugar release by 17% from pretreated sugarcane bagasse. These results indicate that CBM6 can be used as a molecular tool to enhance the catalytic performance of endo-xylanases (GH11) and provide a new strategy for the development of optimized biocatalysts for biotechnological applications.


Assuntos
Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Xilanos/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Biotecnologia , Catálise , Domínio Catalítico , Celulose , Endo-1,4-beta-Xilanases/genética , Hidrólise , Cinética , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharum , Especificidade por Substrato , Xilanos/química
10.
Biotechnol Biofuels ; 9: 71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27006690

RESUMO

BACKGROUND: The conversion of biomass-derived sugars via enzymatic hydrolysis for biofuel production is a challenge. Therefore, the search for microorganisms and key enzymes that increase the efficiency of the saccharification of cellulosic substrates remains an important and high-priority area of study. Trichoderma harzianum is an important fungus known for producing high levels of cellulolytic enzymes that can be used for cellulosic ethanol production. In this context, ß-glucosidases, which act synergistically with cellobiohydrolases and endo-ß-1,4-glucanases in the saccharification process, are potential biocatalysts for the conversion of plant biomass to free glucose residues. RESULTS: In the present study, we used RNA-Seq and genomic data to identify the major ß-glucosidase expressed by T. harzianum under biomass degradation conditions. We mapped and quantified the expression of all of the ß-glucosidases from glycoside hydrolase families 1 and 3, and we identified the enzyme with the highest expression under these conditions. The target gene was cloned and heterologously expressed in Escherichia coli, and the recombinant protein (rThBgl) was purified with high yields. rThBgl was characterized using a comprehensive set of biochemical, spectroscopic, and hydrodynamic techniques. Finally, we determined the crystallographic structure of the recombinant protein at a resolution of 2.6 Å. CONCLUSIONS: Using a rational approach, we investigated the biochemical characteristics and determined the three-dimensional protein structure of a ß-glucosidase that is highly expressed by T. harzianum under biomass degradation conditions. The methodology described in this manuscript will be useful for the bio-prospection of key enzymes, including cellulases and other accessory enzymes, for the development and/or improvement of enzymatic cocktails designed to produce ethanol from plant biomass.

11.
Int J Biol Macromol ; 82: 375-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475230

RESUMO

A novel GH1 ß-glucosidase (EaBgl1A) from a bacterium isolated from Antarctica soil samples was recombinantly overexpressed in Escherichia coli cells and characterized. The enzyme showed unusual pH dependence with maximum activity at neutral pH and retention of high catalytic activity in the pH range 6 to 9, indicating a catalytic machinery compatible with alkaline conditions. EaBgl1A is also a cold-adapted enzyme, exhibiting activity in the temperature range from 10 to 40°C with optimal activity at 30°C, which allows its application in industrial processes using low temperatures. Kinetic characterization revealed an enzymatic turnover (Kcat) of 6.92s(-1) (cellobiose) and 32.98s(-1) (pNPG) and a high tolerance for product inhibition, which is an extremely desirable feature for biotechnological purposes. Interestingly, the enzyme was stimulated by up to 200 mM glucose, whereas the commercial cocktails tested were found fully inhibited at this concentration. These properties indicate EaBgl1A as a promising biocatalyst for biotechnological applications where low temperatures are required.


Assuntos
Adaptação Biológica , Bacillaceae/enzimologia , Bacillaceae/genética , Temperatura Baixa , beta-Glucosidase/química , beta-Glucosidase/genética , Carboidratos/química , Catálise , Clonagem Molecular , Ativação Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Análise de Sequência de DNA , Especificidade por Substrato , beta-Glucosidase/isolamento & purificação
12.
Biochem Biophys Res Commun ; 467(1): 171-7, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26299923

RESUMO

Exfoliative toxins are serine proteases secreted by Staphylococcus aureus that are associated with toxin-mediated staphylococcal syndromes. To date, four different serotypes of exfoliative toxins have been identified and 3 of them (ETA, ETB, and ETD) are linked to human infection. Among these toxins, only the ETD structure remained unknown, limiting our understanding of the structural determinants for the functional differentiation between these toxins. We recently identified an ETD-like protein associated to S. aureus strains involved in mild mastitis in sheep. The crystal structure of this ETD-like protein was determined at 1.95 Å resolution and the structural analysis provide insights into the oligomerization, stability and specificity and enabled a comprehensive structural comparison with ETA and ETB. Despite the highly conserved molecular architecture, significant differences in the composition of the loops and in both the N- and C-terminal α-helices seem to define ETD-like specificity. Molecular dynamics simulations indicate that these regions defining ET specificity present different degrees of flexibility and may undergo conformational changes upon substrate recognition and binding. DLS and AUC experiments indicated that the ETD-like is monomeric in solution whereas it is present as a dimer in the asymmetric unit indicating that oligomerization is not related to functional differentiation among these toxins. Differential scanning calorimetry and circular dichroism assays demonstrated an endothermic transition centered at 52 °C, and an exothermic aggregation in temperatures up to 64 °C. All these together provide insights about the mode of action of a toxin often secreted in syndromes that are not associated with either ETA or ETB.


Assuntos
Exfoliatinas/química , Exfoliatinas/toxicidade , Staphylococcus aureus/química , Staphylococcus aureus/patogenicidade , Animais , Cristalografia por Raios X , Exfoliatinas/classificação , Feminino , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Ovinos , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/microbiologia , Eletricidade Estática , Homologia Estrutural de Proteína , Síndrome
13.
Enzyme Microb Technol ; 69: 31-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25640722

RESUMO

Xylan is an abundant plant cell wall polysaccharide and its reduction to xylose units for subsequent biotechnological applications requires a combination of distinct hemicellulases and auxiliary enzymes, mainly endo-xylanases and ß-xylosidases. In the present work, a bifunctional enzyme consisting of a GH11 endo-1,4-ß-xylanase fused to a GH43 ß-xylosidase, both from Bacillus subtilis, was designed taking into account the quaternary arrangement and accessibility to the substrate. The parental enzymes and the resulting chimera were successfully expressed in Escherichia coli, purified and characterized. Interestingly, the substrate cleavage rate was altered by the molecular fusion improving at least 3-fold the xylose production using specific substrates as beechwood xylan and hemicelluloses from pretreated biomass. Moreover, the chimeric enzyme showed higher thermotolerance with a positive shift of the optimum temperature from 35 to 50 °C for xylosidase activity. This improvement in the thermal stability was also observed by circular dichroism unfolding studies, which seems to be related to a gain of stability of the ß-xylosidase domain. These results demonstrate the superior functional and stability properties of the chimeric enzyme in comparison to individual parental domains, suggesting the molecular fusion as a promising strategy for enhancing enzyme cocktails aiming at lignocellulose hydrolysis.


Assuntos
Glicosídeo Hidrolases/metabolismo , Xilose/biossíntese , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Biotecnologia , Dicroísmo Circular , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Hidrólise , Lignina/metabolismo , Modelos Moleculares , Polissacarídeos/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Temperatura , Xilanos/metabolismo , Xilosidases/química , Xilosidases/genética , Xilosidases/metabolismo
14.
Biochim Biophys Acta ; 1840(10): 3145-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24954307

RESUMO

BACKGROUND: Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. RESULTS: In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. CONCLUSION: Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. GENERAL SIGNIFICANCE: To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Triterpenos/farmacologia , Antineoplásicos/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Triterpenos Pentacíclicos , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triterpenos/química
15.
Biochim Biophys Acta ; 1844(3): 545-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24373874

RESUMO

Snake venom metalloproteinases (SVMPs) belonging to P-I class are able to hydrolyze extracellular matrix proteins and coagulation factors triggering local and systemic reactions by multiple molecular mechanisms that are not fully understood. BmooMPα-I, a P-I class SMVP from Bothrops moojeni venom, was active upon neuro- and vaso-active peptides including angiotensin I, bradykinin, neurotensin, oxytocin and substance P. Interestingly, BmooMPα-I showed a strong bias towards hydrolysis after proline residues, which is unusual for most of characterized peptidases. Moreover, the enzyme showed kininogenase activity similar to that observed in plasma and cells by kallikrein. FRET peptide assays indicated a relative promiscuity at its S2-S'2 subsites, with proline determining the scissile bond. This unusual post-proline cleaving activity was confirmed by the efficient hydrolysis of the synthetic combinatorial library MCA-GXXPXXQ-EDDnp, described as resistant for canonical peptidases, only after Pro residues. Structural analysis of the tripeptide LPL complexed with BmooMPα-I, generated by molecular dynamics simulations, assisted in defining the subsites and provided the structural basis for subsite preferences such as the restriction of basic residues at the S2 subsite due to repulsive electrostatic effects and the steric impediment for large aliphatic or aromatic side chains at the S1 subsite. These new functional and structural findings provided a further understanding of the molecular mechanisms governing the physiological effects of this important class of enzymes in envenomation process.


Assuntos
Venenos de Crotalídeos/enzimologia , Calicreínas/metabolismo , Metaloproteases/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Bothrops , Hidrólise , Cinética , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Prolil Oligopeptidases , Radioimunoensaio , Especificidade por Substrato
16.
J Agric Food Chem ; 57(19): 9210-7, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19746980

RESUMO

Protease production was carried out in solid state fermentation. The enzyme was purified through precipitation with ethanol at 72% followed by chromatographies in columns of Sephadex G75 and Sephacryl S100. It was purified 80-fold and exhibited recovery of total activity of 0.4%. SDS-PAGE analysis indicated an estimated molecular mass of 24.5 kDa and the N-terminal sequence of the first 22 residues was APYSGYQCSMQLCLTCALMNCA. Purified protease was only inhibited by EDTA (96.7%) and stimulated by Fe(2+) revealing to be a metalloprotease activated by iron. Optimum pH was 5.5, optimum temperature was 75 degrees C, and it was thermostable at 65 degrees C for 1 h maintaining more than 70% of original activity. Through enzyme kinetic studies, protease better hydrolyzed casein than azocasein. The screening of fluorescence resonance energy transfer (FRET) peptide series derived from Abz-KLXSSKQ-EDDnp revealed that the enzyme exhibited preference for Arg in P(1) (k(cat)/K(m) = 30.1 mM(-1) s(-1)).


Assuntos
Metaloproteases/isolamento & purificação , Metaloproteases/metabolismo , Thermoascus/enzimologia , Sequência de Aminoácidos , Caseínas/metabolismo , Estabilidade Enzimática , Transferência Ressonante de Energia de Fluorescência , Temperatura Alta , Cinética , Metaloproteases/química , Dados de Sequência Molecular , Peso Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA